

SLEEP AND FATIGUE OFFSHORE

IMPLICATIONS FOR FATIGUE RISK MANAGEMENT

NOGEPA Meeting

20th June 2019

Vanessa Riethmeister, PhD Health, Safety and Environmental Analyst

DISCLOSURE OF SPEAKER'S INTERESTS

(Potential) Conflict of Interest	See below
Potentially relevant company relationships in connection with event	None
Sponsorship or research funding	Nederlandse Aardolie Maatschappij B.V. / Royal Dutch Shell
• Fee or other (financial) payment	• Nederlandse Aardolie Maatschappij B.V. / Royal Dutch Shell
• Shareholder	• /
• Other relationship, i.e	• /

FRM – Fatigue Risk Management
FRMP – Fatigue Risk Management Plan
FRMS – Fatigue Risk Management System

FATIGUED TIRED DROWSY SLEEPY NOT ALERT

WHY IS FATIGUE A PROBLEM OFFSHORE?

- The offshore environment is a high risk environment in which consequences can be severe
- Fatigue is one of the major health & safety risk factors offshore (\rightarrow e.g. due to shift work & consecutive long work days)
- Fatigue offshore is not well understood
 (e.g. causes, courses & etiology)

Deep Water Horizon Disaster, 2010

* U.S. Chemical Safety and Hazard Investigation Board. Investigation report volume 3 drilling rig explosion and fire at the Macondo well. 2016; Report No.: 2010-10-I-OS.

SNAPSHOT OF CURRENT FRM PRACTICES OFFSHORE

- Significant variations of FRMPs based on country legislations and operating companies
- Existing work rostering (partially) based on FRMS (e.g. FAID®)
- In general, more attention is paid to night- and swing-shift workers than day-shift workers
- FRM protocol for HSSE-critical positions
- Fatigue awareness training for workers and supervisors
- Inconsistent use of Journey Management Plans
- Voluntary fatigue/fit-for-duty checks (e.g. the prior sleep/wake calculator)

OFFSHORE SLEEP AND FATIGUE STUDY

OBJECTIVE To better understand sleep & fatigue parameters during offshore shift rotations, to improve existing FRMPs → Prevalences, time courses and predictors of sleep and fatigue parameters were investigated.

- Interviews (N=19), Focus Groups (N=47) & Questionnaires (N=260)
- N= 5 platforms (Dutch Central North Sea)

* Work Eat and Sleep: Towards a Healthy Ageing at Work Program Offshore. BMC Public Health. 2016; 16:134.

OFFSHORE SLEEP AND FATIGUE STUDY

OBJECTIVE To better understand sleep & fatigue parameters during offshore shift rotations, to improve existing FRMP
 → Prevalences, time courses and predictors of sleep and fatigue parameters were investigated.

- 1. Cross-sectional mixed methods baseline study
 - 2. Intensive longitudinal repeated measures study (28-days)
 - N= 60 offshore day-shift workers (contractors & permanent staff)
 - N= 4 platforms (Dutch Central North Sea)
 - Bi-daily objective & subjective sleep and fatigue measures (pre-/post-shift, i.e. morning/evening measures)
 - Statistical analyses: (Generalized) linear mixed model analyses

SUBJECTIVE & OBJECTIVE MEASURES

9

• Sleepiness/Sleep quality (Karolinska Sleepiness Scale (KSS), Range [1-9]) Bi-Daily

Reaction Times/Alertness Bi-Daily Offshore

• Sleep parameters/Activity during the day Continuous

Circadian Rhythms (Melatonin & Cortisol)
 Offshore Days: 2, 7, 13

No Circadian shift detected

→ PREVALENCES, TIME COURSES & PREDICTORS

PREVALENCES

RESULTS

- Cross-sectional data:
 - 73% reported prolonged fatigue
 - 41% experienced a 'Dip', which 60% experienced on day 10/11

RESULTS

→ PREVALENCES, TIME COURSES & PREDICTORS

PREVALENCES

- Cross-sectional data:
 - 73% reported prolonged fatigue
 - 41% experienced a 'Dip', which 60% experienced on day 10/11
- 1 in 7 offshore workers reported severe sleepiness (KSS>6) each offshore day
- The average daily prevalence of severe sleepiness was 10% in pre-shift and 19% in post-shift measures
- In the second week, 25% of offshore workers reported severe sleepiness

Traffic light graphs. Percentages of employees in low (KSS≤3), medium (KSS=4-6) and severe (KSS>6) sleepiness categories over the course of a fourteen-day offshore shift period. Green columns indicate low, orange medium and red high fatigue risk.

Copyright of Shell International

RESULTS

→ PREVALENCES, TIME COURSES & PREDICTORS

ACCUMULATION OF FATIGUE

OFFHORE PERIOD

- Post-shift fatigue scores are higher & increase at a faster rate compared to pre-shift fatigue scores
- Peak of fatigue on day 10 (37%)

RESULTS

→ PREVALENCES, TIME COURSES & PREDICTORS

ACCUMULATION OF SLEEP DEBT

TIB – Time in Bed

TST – Total Sleep Time

OFFHORE PERIOD

- Shorter sleep durations offshore
- Average daily acute sleep loss of 92 min
- Average chronic sleep loss of >2.5 consolidated sleep periods

→ PREVALENCES, TIME COURSES & PREDICTORS

SUMMARY

PRE-OFFHORE PERIOD → Preparation period

• SE% scores decreased, sleep latency, and duration increased

OFFSHORE PERIOD

- Sleep durations, perceived sleep quality and level of rest after awakening decreased
- Sleep loss and post-shift sleepiness scores accumulated over the 14-day offshore work periods
- Post-shift sleepiness accumulation was significantly related to successive days on shift and chronic sleep loss

POST-OFFSHORE PERIOD → Recovery period

Evening sleepiness scores were high and declined rapidly

→ PREVALENCES, TIME COURSES & PREDICTORS

POTENTIAL FATIGUE RISK PRONE PERIODS

End-of-shift effect - high and increasing post-shift fatigue scores in a 14-day offshore work period

Third-quarter-phenomenon – peak in fatigue scores on day 10/11 of a 14-day offshore work period

Spill-over-effect – leave periods affecting work periods and vice versa ¢,

- For example:
- High & rapidly declining fatigue scores and longer sleep durations in post-offshore work periods Sleep banking strategies in pre-offshore work periods
- •

PREDICTORS (for individual sleepiness)

Suggestive evidence for differential demographic (age, chronotype), lifestyle (smoking, baseline fatigue) and health (BMI, mental & physical health) predictors for pre- and post-shift sleepiness scores

low baseline sleepiness scores, older age, earlier chronotypes, smoking and poor level of mental & physical health

low baseline sleepiness scores, younger age, good mental and poor physical health

PREDICTORS (for individual sleepiness)

• Suggestive evidence for differential demographic (age, chronotype), lifestyle (smoking, baseline fatigue) and health (BMI, mental & physical health) predictors for pre- and post-shift sleepiness scores

low baseline sleepiness scores, older age, earlier chronotypes, smoking and poor level of mental & physical health

low baseline sleepiness scores, younger age, good mental and poor physical health

STRENGTHS & LIMITATIONS

STRENGTHS

- Mixed methods design & Intensive longitudinal repeated measures study design
- Subjective & objective sleep and fatigue measurements
- (Generalized) Linear mixed model analyses
- Large offshore sample: including contractors, from multiple platforms

LIMITATIONS

- Limited sample size in absolute terms
- Offshore logistics
- Bi-daily instead of hourly measures

- Study findings add new and unique knowledge to the existing sleep and fatigue literature
- FRMPs should focus on the whole offshore cycle, including pre- and post-offshore work periods
- All offshore workers (including day-shift workers and workers in non-HSSE critical positions) should be covered in FRMPs
- Prolonging offshore shifts beyond two-weeks will likely result in elevated fatigue/sleepiness risk
- Study findings provide important input for the advancement and optimization of existing FRMP and FRMS

RECOMMENDATIONS FOR (OFFSHORE) FRMPs

- Consider accumulating fatigue risk with consecutive (offshore) shift days
- Be mindful of potential fatigue risk prone periods (also applies to JMP & Road Safety)
- Develop \rightarrow Test (cost-effectiveness) \rightarrow Implement fatigue prevention strategies, e.g.:
 - Pre-/Post-offshore work period fatigue checks
 - Pre-HSSE critical tasks fatigue checks
 - Real-time fatigue monitoring
 - Sleep Hygiene education
 - Caffeine intake/Napping strategies/etc.

Take home message

- Take the risk of fatigue serious as fatigue affects us all!
- Spent sufficient time on fatigue/alertness management

- Evaluate your own work/work environment and try to identify the fatigue risks and potential mitigation strategies
- Create a culture of trust where people can speak up when they are not alert to prevent mistakes and harm.

Thank you for your attention

Vanessa.Riethmeister@shell.com

university of groningen

NAM

APPENDX

FUTURE RESEARCH

Future sleep and fatigue offshore studies should build on the presented findings to further advance bio-mathematical fatigue prediction models of FRMS to ultimately improve health and safety of offshore workers.

Specific future research examples

- Cost-benefit analyses of the accumulated fatigue risk in extended offshore periods vs the additional commuting risk in shorter offshore periods
- Effectiveness of fatigue proofing/prevention strategies offshore, including feasibility studies, impact assessments, cost-efficiency studies and offshore worker satisfaction surveys
- Intensive longitudinal prospective studies of the consequences of accumulated sleep loss and fatigue

Figure. Outcomes of the pre- and post-shift objective fatigue metrics, obtained from the psychomotor vigilance task (PVT-B), over the course of the two-week offshore day-shift periods. Means, standard errors and linear prediction lines are plotted for (1) reaction times, (2) number of lapses, (3) number of errors, (4) and number of false starts.

CIRCADIAN RHYTHM ANALYSES

Figure. Outcomes of the circadian rhythm marker analyses. Graph (1) depicts mean salivary cortisol levels and standard errors during the three sampling days (offshore day 2, 7 and 13). Graph (2) depicts dim-light melatonin onset (DLMO) times and standard errors across the three sampling days (offshore days 2, 7 and 13).

27

KSS ANALYSES

AVERAGE KSS PREVALENCES

PUBLICATIONS

- Riethmeister V, Brouwer S, van der Klink J, Bültmann U. Work, eat and sleep: Towards a healthy ageing at work program offshore. *BMC Public Health*. 2016;16:134.
- Riethmeister V, Bültmann U, Gordijn M, Brouwer S, de Boer MR. Investigating daily fatigue scores during two-week offshore day shifts. Appl Ergon. 2018;71:87-94.
- Riethmeister V, Bültmann U, de Boer MR, Gordijn M, Brouwer S. Examining courses of sleep quality and sleepiness in full 2 weeks on/2 weeks off offshore day shift rotations. *Chronobiol Int.* 2018; 35(6):759-72.
- Riethmeister V, Matthews R, Dawson D, de Boer MR, Brouwer S, Bültmann U. Time-of-Day and Days-on-Shift Predict Increased Fatigue Over Two-Week Offshore Day-Shifts. Applied Ergonomics, accepted for publication.
- Riethmeister, V.; Bültmann, U.; de Boer, M.; Brouwer, S. Predictors of sleepiness in two-week offshore day-shift workers. Submitted.

